organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[3-(4-Chlorophenyl)isoquinolin-1-yl]-3,5-diethyl-1*H*-pyrazole

F. Nawaz Khan,^a P. Manivel,^b K. Prabakaran,^b Venkatesha R. Hathwar^c and Seik Weng Ng^d*

^aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, ^bChemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, ^cSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 28 December 2009; accepted 30 December 2009

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.005 Å; R factor = 0.062; wR factor = 0.177; data-to-parameter ratio = 15.8.

The title compound, $C_{22}H_{20}ClN_3$, is composed of a dialkylsubstituted pyrazole ring connected to an aryl-substituted isoquinoline ring system with a dihedral angle of 55.8 (1)° between the pyrazole ring and and the isoquinoline ring system. The dihedral angle between the chlorophenyl ring and the isoquinoline ring system is 28.3 (1)°.

Related literature

For medicinal applications of hydrazine derivatives, see: Broadhurst *et al.* (2001).

Experimental

Crystal data

 $C_{22}H_{20}ClN_3$ $V = 1954.3 (3) Å^3$
 $M_r = 361.86$ Z = 4

 Monoclinic, $P2_1/n$ Mo K\alpha radiation

 a = 8.4484 (6) Å $\mu = 0.21 \text{ mm}^{-1}$

 b = 15.0386 (12) Å T = 290 K

 c = 15.4894 (11) Å $0.25 \times 0.18 \times 0.15 \text{ mm}$

Data collection

Bruker SMART area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.951, T_{\rm max} = 0.970$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.177$ S = 1.033703 reflections 14613 measured reflections 3703 independent reflections 2235 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.040$

235 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.46 \mbox{ e } \mbox{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.19 \mbox{ e } \mbox{ Å}^{-3}$

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Department of Science and Technology, India, for use of the diffraction facility at IISc under the IRHPA–DST program. FNK thanks the DST for Fast Track Proposal funding. We thank VIT University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5161).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Broadhurst, M. J., Johnson, W. H. & Walter, D. S. (2001). US Patent No. 6235787.

Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

Westrip, S. P. (2010). publCIF. In preparation.

supplementary materials

Acta Cryst. (2010). E66, o370 [doi:10.1107/S1600536809055731]

1-[3-(4-Chlorophenyl)isoquinolin-1-yl]-3,5-diethyl-1*H*-pyrazole

F. N. Khan, P. Manivel, K. Prabakaran, V. R. Hathwar and S. W. Ng

Experimental

1-(3-(4-Chlorophenyl)isoquinolin-1-yl)hydrazine (2.69 g, 10mmol) and heptane-3,5-dione (1.28 g, 10 mmol) were dissolved in ethanol (30 ml). The solution was heated for 12 h under a nitrogen atmosphere. The reaction was quenched with water; the compound was extracted with ethyl acetate. The ethyl acetate phase was washed with water, dried, concentrated and purified by column chromatography to yield a white powder. Crystals were were obtained upon recrystallization from dichloromethane.

Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.93–0.97, O–H 0.82 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C).

Figures

Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of $C_{22}H_{20}ClN_3$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

1-[3-(4-Chlorophenyl)isoquinolin-1-yl]-3,5-diethyl-1H-pyrazole

Crystal data	
C22H20CIN3	F(000) = 760
$M_r = 361.86$	$D_{\rm x} = 1.230 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2329 reflections
a = 8.4484 (6) Å	$\theta = 2.6 - 20.1^{\circ}$
<i>b</i> = 15.0386 (12) Å	$\mu = 0.21 \text{ mm}^{-1}$
c = 15.4894 (11) Å	T = 290 K
$\beta = 96.763 \ (1)^{\circ}$	Block, colorless
V = 1954.3 (3) Å ³	$0.25\times0.18\times0.15~mm$
Z = 4	

Data collection

Bruker SMART area-detector diffractometer	3703 independent reflections
Radiation source: fine-focus sealed tube	2235 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.040$
ϕ and ω scans	$\theta_{\text{max}} = 25.7^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -10 \rightarrow 9$
$T_{\min} = 0.951, T_{\max} = 0.970$	$k = -18 \rightarrow 18$
14613 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.062$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.177$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.081P)^{2} + 0.4577P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3703 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
235 parameters	$\Delta \rho_{max} = 0.46 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.04502 (15)	0.45817 (9)	0.90130 (7)	0.1233 (5)
N1	0.3419 (2)	0.36347 (13)	0.53000 (14)	0.0507 (5)
N2	0.3322 (3)	0.30349 (14)	0.39224 (14)	0.0567 (6)
N3	0.3354 (3)	0.34178 (16)	0.31188 (16)	0.0691 (7)
C1	0.4218 (3)	0.34365 (16)	0.46595 (17)	0.0508 (6)
C2	0.5882 (3)	0.35802 (16)	0.46517 (18)	0.0539 (7)
C3	0.6777 (4)	0.3266 (2)	0.4002 (2)	0.0708 (8)
H3	0.6272	0.2958	0.3526	0.085*
C4	0.8377 (4)	0.3411 (2)	0.4069 (3)	0.0842 (10)
H4	0.8964	0.3191	0.3645	0.101*
C5	0.9138 (4)	0.3887 (2)	0.4766 (3)	0.0838 (10)
Н5	1.0228	0.3992	0.4797	0.101*
C6	0.8312 (3)	0.4201 (2)	0.5405 (2)	0.0740 (9)
H6	0.8841	0.4519	0.5867	0.089*
C7	0.6650 (3)	0.40456 (16)	0.53719 (19)	0.0561 (7)
C8	0.5763 (3)	0.42863 (17)	0.60411 (18)	0.0572 (7)
H8	0.6246	0.4608	0.6513	0.069*
C9	0.4196 (3)	0.40544 (16)	0.60104 (16)	0.0497 (6)

C10	0.3237 (3)	0.42168 (17)	0.67334 (17)	0.0527 (7)
C11	0.3598 (4)	0.48974 (19)	0.73263 (18)	0.0660 (8)
H11	0.4439	0.5280	0.7257	0.079*
C12	0.2736 (4)	0.5017 (2)	0.8014 (2)	0.0806 (9)
H12	0.2991	0.5477	0.8408	0.097*
C13	0.1495 (4)	0.4454 (2)	0.8118 (2)	0.0756 (9)
C14	0.1079 (4)	0.3787 (2)	0.7535 (2)	0.0753 (9)
H14	0.0224	0.3415	0.7603	0.090*
C15	0.1948 (3)	0.3675 (2)	0.68431 (19)	0.0654 (8)
H15	0.1664	0.3226	0.6442	0.078*
C16	0.3239 (8)	0.3364 (4)	0.1205 (3)	0.170 (2)
H16A	0.2865	0.3496	0.0609	0.254*
H16B	0.3950	0.2865	0.1229	0.254*
H16C	0.3792	0.3871	0.1468	0.254*
C17	0.1949 (6)	0.3162 (3)	0.1649 (2)	0.1121 (14)
H17A	0.1385	0.2663	0.1361	0.135*
H17B	0.1227	0.3666	0.1599	0.135*
C18	0.2325 (4)	0.2938 (2)	0.25986 (19)	0.0704 (8)
C19	0.1668 (4)	0.2265 (2)	0.30509 (19)	0.0678 (8)
H19	0.0936	0.1841	0.2820	0.081*
C20	0.2294 (3)	0.23392 (18)	0.38943 (19)	0.0580 (7)
C21	0.2030 (4)	0.1809 (2)	0.4678 (2)	0.0755 (9)
H21A	0.3054	0.1626	0.4973	0.091*
H21B	0.1518	0.2183	0.5074	0.091*
C23	0.1027 (5)	0.1005 (3)	0.4464 (3)	0.1153 (15)
H23A	0.0896	0.0689	0.4989	0.173*
H23B	0.1538	0.0626	0.4082	0.173*
H23C	0.0002	0.1183	0.4183	0.173*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.1396 (10)	0.1493 (10)	0.0907 (8)	0.0002 (8)	0.0536 (7)	-0.0141 (7)
N1	0.0447 (12)	0.0527 (12)	0.0538 (13)	-0.0062 (10)	0.0020 (10)	-0.0004 (10)
N2	0.0556 (14)	0.0604 (14)	0.0539 (14)	-0.0113 (11)	0.0048 (11)	-0.0057 (11)
N3	0.0807 (18)	0.0707 (16)	0.0554 (15)	-0.0148 (13)	0.0055 (13)	0.0011 (12)
C1	0.0492 (16)	0.0455 (14)	0.0565 (17)	-0.0060 (11)	0.0009 (13)	0.0010 (12)
C2	0.0451 (15)	0.0481 (14)	0.0683 (18)	-0.0035 (12)	0.0062 (13)	0.0085 (13)
C3	0.063 (2)	0.0708 (19)	0.081 (2)	0.0019 (15)	0.0174 (17)	0.0037 (16)
C4	0.061 (2)	0.087 (2)	0.109 (3)	0.0079 (17)	0.027 (2)	0.010 (2)
C5	0.0443 (18)	0.088 (2)	0.120 (3)	-0.0014 (17)	0.012 (2)	0.027 (2)
C6	0.0460 (17)	0.077 (2)	0.095 (2)	-0.0096 (15)	-0.0072 (17)	0.0142 (18)
C7	0.0455 (15)	0.0492 (15)	0.0711 (18)	-0.0055 (12)	-0.0042 (14)	0.0141 (13)
C8	0.0540 (17)	0.0527 (15)	0.0609 (17)	-0.0079 (13)	-0.0097 (14)	0.0028 (13)
C9	0.0480 (16)	0.0459 (14)	0.0523 (16)	-0.0046 (12)	-0.0064 (12)	0.0045 (12)
C10	0.0516 (16)	0.0515 (15)	0.0523 (15)	0.0029 (12)	-0.0049 (12)	0.0064 (12)
C11	0.074 (2)	0.0614 (17)	0.0616 (18)	-0.0055 (15)	0.0018 (16)	-0.0036 (15)
C12	0.098 (3)	0.080 (2)	0.062 (2)	-0.0021 (19)	0.0049 (18)	-0.0152 (17)

supplementary materials

C13	0.084 (2)	0.087 (2)	0.0566 (19)	0.0108 (19)	0.0129 (16)	0.0040 (17)
C14	0.070 (2)	0.084 (2)	0.073 (2)	-0.0059 (17)	0.0134 (17)	0.0072 (18)
C15	0.0614 (18)	0.0712 (19)	0.0627 (18)	-0.0079 (15)	0.0035 (15)	-0.0034 (14)
C16	0.183 (6)	0.225 (7)	0.097 (4)	-0.021 (5)	0.000 (4)	0.037 (4)
C17	0.162 (4)	0.105 (3)	0.071 (3)	-0.028 (3)	0.020 (3)	-0.007 (2)
C18	0.078 (2)	0.078 (2)	0.0541 (18)	-0.0048 (17)	0.0019 (16)	-0.0130 (16)
C19	0.0670 (19)	0.0709 (19)	0.065 (2)	-0.0160 (15)	0.0042 (15)	-0.0193 (16)
C20	0.0536 (16)	0.0571 (16)	0.0639 (18)	-0.0119 (13)	0.0100 (13)	-0.0113 (14)
C21	0.083 (2)	0.0689 (19)	0.076 (2)	-0.0276 (16)	0.0127 (17)	-0.0040 (16)
C23	0.142 (4)	0.096 (3)	0.109 (3)	-0.060 (3)	0.015 (3)	0.001 (2)

Geometric parameters (Å, °)

Cl1—C13	1.739 (3)	C11—H11	0.9300
N1-C1	1.299 (3)	C12—C13	1.372 (5)
N1—C9	1.368 (3)	C12—H12	0.9300
N2-C20	1.357 (3)	C13—C14	1.368 (4)
N2—N3	1.375 (3)	C14—C15	1.378 (4)
N2-C1	1.428 (3)	C14—H14	0.9300
N3—C18	1.327 (4)	C15—H15	0.9300
C1—C2	1.424 (4)	C16—C17	1.390 (6)
С2—С7	1.409 (4)	C16—H16A	0.9600
C2—C3	1.410 (4)	C16—H16B	0.9600
C3—C4	1.361 (4)	C16—H16C	0.9600
С3—Н3	0.9300	C17—C18	1.505 (5)
C4—C5	1.389 (5)	C17—H17A	0.9700
C4—H4	0.9300	C17—H17B	0.9700
C5—C6	1.361 (4)	C18—C19	1.384 (4)
С5—Н5	0.9300	C19—C20	1.355 (4)
C6—C7	1.418 (4)	С19—Н19	0.9300
С6—Н6	0.9300	C20—C21	1.491 (4)
С7—С8	1.396 (4)	C21—C23	1.491 (4)
С8—С9	1.364 (4)	C21—H21A	0.9700
С8—Н8	0.9300	C21—H21B	0.9700
C9—C10	1.478 (4)	C23—H23A	0.9600
C10—C15	1.387 (4)	C23—H23B	0.9600
C10—C11	1.385 (4)	C23—H23C	0.9600
C11—C12	1.372 (4)		
C1—N1—C9	118.5 (2)	C14—C13—Cl1	119.6 (3)
C20—N2—N3	112.0 (2)	C12-C13-Cl1	119.5 (3)
C20—N2—C1	129.0 (2)	C13—C14—C15	119.0 (3)
N3—N2—C1	118.8 (2)	C13—C14—H14	120.5
C18—N3—N2	103.9 (2)	C15—C14—H14	120.5
N1—C1—C2	125.1 (2)	C14—C15—C10	121.4 (3)
N1-C1-N2	115.7 (2)	C14—C15—H15	119.3
C2-C1-N2	119.3 (2)	C10-C15-H15	119.3
С7—С2—С3	119.8 (3)	C17—C16—H16A	109.5
C7—C2—C1	115.6 (3)	C17—C16—H16B	109.5
C3—C2—C1	124.6 (3)	H16A—C16—H16B	109.5

C4—C3—C2	120.2 (3)	C17—C16—H16C	109.5
С4—С3—Н3	119.9	H16A—C16—H16C	109.5
С2—С3—Н3	119.9	H16B—C16—H16C	109.5
C3—C4—C5	120.4 (3)	C16—C17—C18	116.5 (4)
C3—C4—H4	119.8	С16—С17—Н17А	108.2
С5—С4—Н4	119.8	С18—С17—Н17А	108.2
C6—C5—C4	121.0 (3)	С16—С17—Н17В	108.2
С6—С5—Н5	119.5	С18—С17—Н17В	108.2
С4—С5—Н5	119.5	H17A—C17—H17B	107.3
C5—C6—C7	120.4 (3)	N3—C18—C19	111.3 (3)
С5—С6—Н6	119.8	N3—C18—C17	121.3 (3)
С7—С6—Н6	119.8	C19—C18—C17	127.4 (3)
C8—C7—C2	118.6 (2)	C20—C19—C18	107.1 (3)
C8—C7—C6	123.1 (3)	С20—С19—Н19	126.5
C2—C7—C6	118.2 (3)	С18—С19—Н19	126.5
C9—C8—C7	120.7 (3)	C19—C20—N2	105.7 (3)
С9—С8—Н8	119.6	C19—C20—C21	131.5 (3)
С7—С8—Н8	119.6	N2-C20-C21	122.9 (2)
C8—C9—N1	121.2 (3)	C23—C21—C20	112.8 (3)
C8—C9—C10	123.2 (2)	C23—C21—H21A	109.0
N1—C9—C10	115.6 (2)	C20—C21—H21A	109.0
C15-C10-C11	117.9 (3)	C23—C21—H21B	109.0
C15—C10—C9	120.3 (2)	C20—C21—H21B	109.0
C11—C10—C9	121.8 (3)	H21A—C21—H21B	107.8
C12-C11-C10	121.1 (3)	C21—C23—H23A	109.5
C12—C11—H11	119.5	С21—С23—Н23В	109.5
C10-C11-H11	119.5	H23A—C23—H23B	109.5
C11—C12—C13	119.6 (3)	С21—С23—Н23С	109.5
C11—C12—H12	120.2	H23A—C23—H23C	109.5
C13—C12—H12	120.2	H23B—C23—H23C	109.5
C14—C13—C12	121.0 (3)		
C20—N2—N3—C18	-0.2 (3)	C8—C9—C10—C15	-152.8 (3)
C1—N2—N3—C18	-175.2 (2)	N1—C9—C10—C15	26.0 (3)
C9—N1—C1—C2	3.5 (4)	C8—C9—C10—C11	26.3 (4)
C9—N1—C1—N2	-177.3 (2)	N1-C9-C10-C11	-154.9 (2)
C20—N2—C1—N1	-49.0 (4)	C15-C10-C11-C12	1.8 (4)
N3—N2—C1—N1	125.1 (3)	C9—C10—C11—C12	-177.3 (3)
C20—N2—C1—C2	130.3 (3)	C10-C11-C12-C13	0.0 (5)
N3—N2—C1—C2	-55.7 (3)	C11-C12-C13-C14	-1.5 (5)
N1—C1—C2—C7	-5.9 (4)	C11—C12—C13—Cl1	177.7 (2)
N2—C1—C2—C7	174.9 (2)	C12-C13-C14-C15	1.3 (5)
N1—C1—C2—C3	171.8 (3)	Cl1—C13—C14—C15	-178.0 (2)
N2—C1—C2—C3	-7.3 (4)	C13—C14—C15—C10	0.6 (5)
C7—C2—C3—C4	0.0 (4)	C11-C10-C15-C14	-2.1 (4)
C1—C2—C3—C4	-177.7 (3)	C9—C10—C15—C14	177.0 (3)
C2—C3—C4—C5	-1.4 (5)	N2—N3—C18—C19	-0.6 (3)
C3—C4—C5—C6	1.4 (5)	N2—N3—C18—C17	177.6 (3)
C4—C5—C6—C7	0.2 (5)	C16—C17—C18—N3	44.6 (6)
C3—C2—C7—C8	-174.8 (2)	C16—C17—C18—C19	-137.5 (5)

supplementary materials

C1—C2—C7—C8	3.0 (3)	N3-C18-C19-C20	1.2 (4)
C3—C2—C7—C6	1.5 (4)	C17-C18-C19-C20	-176.8 (3)
C1—C2—C7—C6	179.3 (2)	C18—C19—C20—N2	-1.2 (3)
C5—C6—C7—C8	174.6 (3)	C18—C19—C20—C21	179.6 (3)
C5—C6—C7—C2	-1.6 (4)	N3—N2—C20—C19	0.9 (3)
C2—C7—C8—C9	1.8 (4)	C1—N2—C20—C19	175.3 (3)
C6—C7—C8—C9	-174.3 (2)	N3—N2—C20—C21	-179.8 (3)
C7—C8—C9—N1	-4.5 (4)	C1—N2—C20—C21	-5.4 (4)
C7—C8—C9—C10	174.2 (2)	C19—C20—C21—C23	7.2 (5)
C1—N1—C9—C8	1.9 (3)	N2-C20-C21-C23	-171.8 (3)
C1—N1—C9—C10	-176.9 (2)		

